X-ray Induced Radiation Damage in Segmented p+n Silicon Sensors

J. Becker¹, E. Fretwurst², R. Klanner², I. Pintilie³, J. Schwandt², M. Turcato⁴ and J. Zhang²,*

(on behalf of the AGIPD Consortium)

¹Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
²Institute for Experimental Physics, Hamburg University, Hamburg, Germany
³National Institute of Materials Physics, Bucharest, Romania
⁴European XFEL GmbH, Hamburg, Germany

*supported by Marie Curie Initial Training Network – Particle Detectors and the Helmholtz Alliance “Physics at the Terascale”
Outline

- Motivation: Radiation hard silicon sensors for the XFEL
- Introduction to X-ray induced radiation damage
- Characterization and determination of damage related parameters
- Influence on electric properties of segmented sensors
- Summary
Motivation:

Development of radiation hard (0 - 1 GGy!) silicon pixel sensors for experiments with hard X-rays (3 keV – 25 keV) at the European XFEL.

Method:

- Extract microscopic parameters related to X-ray irradiation → this talk
- Understand the influence of X-ray irradiation on electrical properties of segmented sensors → this talk
- Implement the extracted parameters in TCAD simulation and verify results with measurements on segmented sensors
- Optimize sensor design using TCAD simulation → J. Schwandt et al., arXiv:1111.4901

Main effects in silicon sensors @ XFEL:

- No bulk damage for $E_{\text{x-rays}} < 300$ keV
- Surface damage: oxide charges and interface traps build up
 → increase leakage current (noise + power dissipation)
 → reduce breakdown voltage
 → increase inter-pixel capacitance and full depletion voltage
 → charge losses below the Si-SiO$_2$ interface
X-ray induced defects in silicon sensors

Formation of defects induced by X-ray ionizing radiation:

- X-rays produce electron-hole pairs in SiO$_2$ [~ 18 eV/pair]
- Fraction of electron-hole pairs recombine:
 \rightarrow field dependent yield of e-h pairs
- Remaining electrons escape from SiO$_2$ [$\mu_e \sim 20$ cm2/(V·s)]
- Holes trapped in vacancies near Si-SiO$_2$ interface
 [$\mu_h < 10^{-5}$ cm2/(V·s)]

 e.g., $V_{ox} + h^+ \rightarrow V_{ox}^+$ \(\longleftrightarrow\) oxide charges (N_{ox})
- Protons get released and react with passivated dangling bonds at the interface:

 e.g., $V_{ox}H_2 + h^+ \rightarrow V_{ox}H_2^+ \rightarrow V_{ox}H + H^+$
 $H^+ + SiH_{int} \rightarrow Si^+ + H_2$

 interface traps (N_{it})

* from J.R. Schwank, 2008
Current-Voltage (I-V) measurement on Gate-Controlled Diode (GCD) for I_{surface} (μA/cm2):

- Increase of surface current $I_{\text{surface}} \leftarrow D_{it}^{\text{mid-gap}}$ (eV$^{-1}$cm$^{-2}$)

Accumulation: $I_{\text{bulk,diode}} + I_{\text{diff}}$

Depletion: $I_{\text{bulk,diode}} + I_{\text{diff}} + I_{\text{surface}} + I_{\text{bulk,gate}}$

Inversion: $I_{\text{bulk,diode}} + I_{\text{diff}} + I_{\text{bulk,gate}}$

$\rightarrow I_{\text{surface}} = |I_{\text{depletion}} - I_{\text{inversion}}|$

\rightarrow Surface current density = $I_{\text{surface}}/A_{\text{gate}}$
Thermal Dielectric Relaxation Current (TDRC) measurement on MOS capacitor for $N_{it}^{(i)}$ (cm$^{-2}$):

- Measurement technique: Thermal Dielectric Relaxation Current (TDRC)
 1. Bias the MOS capacitor to accumulation → fill interface traps with electrons
 2. Cool down to 10 K → freeze traps
 3. Reverse bias voltage and heat up to 290 K → trapped charges at the Si-SiO$_2$ interface get released

\[
N_{it}^{(i)} = \int_{E_v}^{E_c} D_{it}^{(i)} (E_{it}) dE_{it}
\]

- Properties of 3 dominant interface traps in silicon band gap after X-ray irradiation:

<table>
<thead>
<tr>
<th></th>
<th>D_{it}^{1}</th>
<th>D_{it}^{2}</th>
<th>D_{it}^{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_c-E_{it} [eV]</td>
<td>0.39</td>
<td>0.48</td>
<td>0.60</td>
</tr>
<tr>
<td>FWHM [eV]</td>
<td>0.26</td>
<td>0.13</td>
<td>0.071</td>
</tr>
<tr>
<td>σ_{eff} [cm2]</td>
<td>1.2×10^{-15}</td>
<td>5.0×10^{-17}</td>
<td>1.0×10^{-15}</td>
</tr>
</tbody>
</table>
Capacitance/Conductance-Voltage (C/G-V) measurement on MOS capacitor + model calculation for N_{ox} (cm$^{-2}$):

- Frequency shift of C/G-V curves $\leftarrow N_{it}^{(i)}$
- Shift in gate voltage $\leftarrow N_{ox} + N_{it}^{(i)}$
- TDRC spectra + model \rightarrow reproduce measured C/G-V curves $\rightarrow N_{ox}$

Model for MOS capacitor

- Capacitance and conductance of isolation layer
- Inversion capacitance
- Depletion capacitance depends on thickness of depletion layer
- Recombination/generation resistance
- Capacitance and conductance of un-depleted region

C/G-V measurement on irradiated MOS capacitor

- Dots: measurements
- Lines: calculation

- 5 MGy, 120 min @ 80°C
- 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz
Investigations:
- Orientation: \(<111>\) vs. \(<100>\)
- Vendor: CiS and Hamamatsu
- Insulator: \(\text{SiO}_2\) vs. \(\text{SiO}_2 + \text{Si}_3\text{N}_4\)

Conclusions:
- \(N_{\text{ox}}\) and \(I_{\text{surface}}\) saturate with dose: typically \(N_{\text{ox}} \sim (1.5 - 4.0) \times 10^{12} \text{ cm}^{-2}\), \(I_{\text{surface}} \sim (3 - 7) \mu\text{A/cm}^2\)
- Differences observed for orientations, \(\text{SiO}_2\) vs. \(\text{SiO}_2 + \text{Si}_3\text{N}_4\), vendors
- Saturation mechanism of \(N_{\text{ox}}\): equilibrium between hole trapping and electron recombination
Investigations:
- CiS <100> MOS capacitor and Gate-Controlled Diode (~ 350 nm SiO₂ + 50 nm Si₃N₄)
- Electric field in the oxide E_{ox}: ~ (0 - 0.7) MV/cm [oxide breakdown: ~ 10 MV/cm]

Conclusions:
- N_{ox} and I_{surface} increase for $E_{\text{ox}} > 0$
- No strong E_{ox} dependence for $E_{\text{ox}} < 0$
- p^+n sensor: $E_{\text{ox}} < 0 \rightarrow$ not a problem!
Results: N_{it} vs. E_{ox}

TDRC spectra and N_{it}:

- Dependence on E_{ox} similar to $I_{surface}$
- TDRC spectra:
 - 100 kGy → change of amplitude
 - 100 MGy → change of shape and amplitude

Field dependence of interface trap density

- $330 \text{ nm SiO}_2 + 50 \text{ nm Si}_3\text{N}_4 - 100 \text{ kGy}$
- $360 \text{ nm SiO}_2 + 50 \text{ nm Si}_3\text{N}_4 - 100 \text{ MGy}$

\[\text{TDRC spectra of } 100 \text{ kGy dose} \]

-25 V after annealing for 10min@80 °C
-10 V
-0 V
-10 V
-25 V

\[\beta = 0.183 \text{ K/s} \]

\[\text{TDRC spectra of } 100 \text{ MGy dose} \]

-25 V after annealing for 10min@80 °C
-10 V
-0 V
-10 V
-25 V

\[\beta = 0.183 \text{ K/s} \]
C-V curves of p⁺n strip sensor

- V_{dep} increases ~ 10 V after irradiation due to the presence of surface charges (not due to change of doping concentration).
- Strong frequency dependence of total capacitance observed for $V_{\text{bias}} < 300$ V.

![Diagram of p⁺n strip sensor structure]

- Before irradiation
- 1 & 10 MGy

V_{merge} for $f = 100$ kHz (after 60 min @ 80°C)

Total Capacitance (in series)

Total Capacitance after 10 MGy (in series)
I-V curves of p+n strip sensor

- Leakage current: \(I_{\text{leakage}} = I_{\text{bulk}} + I_{\text{surface}} \)

- Increase of \(I_{\text{leakage}} \) after irradiation \(\leftarrow \) interface trap density \(N_{it} \)
- “Linear” increase of \(I_{\text{leakage}} \) with bias voltage \(\leftarrow \) depleted area \(A_{\text{dep}} \) at Si-SiO\(_2\) interface
- Decrease of \(I_{\text{leakage}} \) with irradiation dose \(\leftarrow \) result of competition between \(N_{it} \) and \(A_{\text{dep}} \)

- For irradiation under bias, \(I_{\text{leakage}} \) larger by \(\sim 100 \) nA

J. Becker, DESY

VERTEX 2012, 16th-21st Sept. 2012, Jeju, Korea
• 660 nm red laser injection (absorption length in silicon ~ 3 μm) into DC coupled sensor (T. Poehlsen)

Signals of p^+n strip sensor

Readout (a) red laser injection Readout (b)

Readout (b)

Readout (c)

transients for strip L at $x=12 \mu$m

transients on the rear side at $x=12 \mu$m
Charge losses in p⁺n strip sensor

- Charge losses only close to Si-SiO₂ interface

- Sensor with SiO₂ passivated

 un-irradiated:

 - dry air: ramping up → electron losses (~40% @ 200 V)

 ramping down → hole losses

 - humid air: no losses

 irradiated with X-rays:

 - dry air: ramping up → electron losses (~90% @ 200 V)

 ramping down → electron losses (~20% @ 200 V)

 - humid air: electron losses (~45% @ 200 V → 0% @ 500 V)

- Similar results for detector with different technology and passivation (SiON)
Summary:

Characterization of damage related parameters
- 3 dominant interface traps D_{it}^n after irradiation \rightarrow parameters extracted
- C/G-V measurements can be described by D_{it}^n and N_{ox}

 surface current density + fixed oxide charge density as function of dose & field

 saturation with dose and field pointing to the gate

 results different according to orientations, insulators and vendors

Influence of X-ray induced damage on p^+n segmented sensors
- Changes of electrical properties explained by N_{ox} and N_{it}

Observation of charge losses close to Si-SiO$_2$ interface
- big effect (but only for charges within \simμm of interface!)
- depends on dose, environmental condition and operation voltage

Relevance for sensor:

Optimization of sensor with better performance needs damage parameters

Short range charged particles or photons entering p^+ side meets charge losses
Thanks for your attention!

Work done within the AGIPD Collaboration.
Results of annealing: N_{ox} vs. time

Annealing of N_{ox}:

- Exponential decay: $N_{ox}(t) = A \cdot \exp\left(-\frac{t}{\tau}\right) + y_0 \rightarrow$ description inadequate

![Annealing behavior of oxide charge density](image)

- “Tunnel anneal” model [T. R. Oldham et al., 1986]:

$$N_{ox}(t) = N_{ox}^0 \cdot \left(1 + \frac{t}{t_0}\right)^{-\frac{\lambda}{2\beta}} \quad \text{with} \quad t_0(T) = t^*_0 \cdot \exp\left(\frac{\Delta E}{k_BT}\right)$$

<table>
<thead>
<tr>
<th>N_{ox}^0 [cm$^{-2}$]</th>
<th>$\lambda/2\beta$</th>
<th>t^*_0 [s]</th>
<th>ΔE [eV]</th>
<th>T [$^\circ$C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6×10^{12}</td>
<td>0.070</td>
<td>5.4 $\times 10^{12}$</td>
<td>0.91</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

$\Delta E = E_t(SiO_2) - E_F(Si) \rightarrow E_t(SiO_2) \sim 6.0$ eV, compatible with existing data

ΔE: energy difference between trap level and silicon Fermi level

λ: characteristic length (\sim nm); N_{ox}^0: N_{ox} at $t = 0$

$N_{ht}(x) = \lambda \cdot N_{ox}^0 \cdot \exp(-\lambda \cdot x)$

τ_0^*: tunneling time constant

β: parameter related to barrier height; t_0^*: effective tunneling time constant
Results of annealing: I_{surface} vs. time

Annealing of I_{surface}:

- Exponential decay: $I_{\text{surface}}(t) = A \cdot \exp\left(-\frac{t}{\tau}\right) + y_0$ → description inadequate
- Power law:

$$I_{\text{surface}}(t) = I_{\text{surface}}^0 \cdot (1 + t/t_1)^{-\eta} \quad \text{with} \quad t_1(T) = t_1^* \cdot \exp\left(\frac{E_a}{k_B T}\right) \quad \text{and} \quad \eta = \frac{k_1}{2k_2}$$

Two-reaction model (M. L. Reed 1987):

→ Dangling bonds: $\frac{d}{dt} [\text{Si} \cdot] = -k_1 [\text{Si} \cdot][H]$
→ Hydrogen: $\frac{d}{dt} [\text{H}] = -2k_2 [\text{H}][\text{H}]$

k_1 & k_2: reaction rate

<table>
<thead>
<tr>
<th>I_{surface}^0 [$\mu\text{A/cm}^2$]</th>
<th>η</th>
<th>t_1^* [s]</th>
<th>E_a [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>0.21</td>
<td>1.4 x 10^{-8}</td>
<td>0.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T [$^\circ$C]</th>
<th>80</th>
<th>60</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1 [s]</td>
<td>140</td>
<td>549</td>
<td>15298</td>
</tr>
</tbody>
</table>

Data described by power law predicted by “two-reaction model”

Data show that same function with different parameters for the different traps $N_{it}^{(i)}$ describes data
Results based on calculation for 5 MGy dose (results scalable to other doses):

- Slow annealing for N_{ox}: e.g., at 20 °C, $\Delta N_{ox}/N_{ox}$ by less than 50% in 3 years (but...)
- Reduction of $I_{surface}$ in days: e.g., at 20 °C, $\Delta I_{surface}/I_{surface}$ by 50% just in 5 days!