First Three-Dimensionally Integrated Chip for Photon Science

P. Maj¹, G. Carini², G. Deptuch³, P. Grybos¹, D. P. Siddons⁴, R. Szczygiel¹, M. Trimpl³, R. Yarema³

¹AGH-UST DMI, Cracow, Poland
²SLAC, Menlo Park, CA, USA
³FNAL, Batavia IL, USA
⁴BNL Upton NY, USA

OUTLINE:
1) Application,
2) Specification,
3) Mounting options on the detector
4) Architecture of Analog and Digital
5) Testing Results of Digital and Analog part
6) Summary.
Application: X-ray Photon Correlation Spectroscopy

To study the dynamics of various equilibrium and non-equilibrium processes occurring in condensed matter systems, the target is to output time stamped information $\Delta t=10 \mu s$ for long exposure times; very low occupancy $< 10 \text{ ph/mm}^2/10\mu\text{s}$.

The final results are not actual images but mathematical representation of autocorrelation series computed per spatial position. The speckle pattern changes.

Design specification

Technology:
2 wafers with Cu-Cu thermocompresion BI by Tezzaron, **CHRT 130 nm** (6 metal layer) is supplemented by insertion of **TSV (6 um deep, min space 3.8 um)** after completion of FEOL

Geometry:
64 × 64 array of 80x80 \(\mu \text{m}^2 \) pixels, 5120 × 5120 \(\mu \text{m}^2 \) active surface (Die size 5.5 × 6.3 mm\(^2\))

1st tier – analog part, 2nd tier – digital part,

Analog part:
Architecture of single pixel: **CSA + shaper + discriminator** (trimming and testing options)
Optimized for **8 keV X-ray** photons (up to 3 × 8 keV with Si detector),
Shaping time \(t_p=250 \text{ ns}, \text{ENC} <150 \text{ e}-, \text{pwr} \sim 25 \text{ uW} / \text{analog pixel} \)

Digital part:
Two modes of operation:
1) timed readout of hits acquired at low occupancy (**address and hit count**, 10 \(\mu \text{s} \) frame readout time)
2) **imaging** (two 5 bit-long counters / pixel accumulates hits occurring in each time slot, readout uses sparsification mechanism but no readout of addresses)

Dead timeless operation (operation divided into time slots: hits arriving in time \(\Delta t_{n-1} \) are read out in \(\Delta t_n \) while simultaneously new hits are being acquired in time \(\Delta t_n \)). **Sparsified data readout** based on priority encoder circuit (binary tree) with automatic binary-coded generation of hit pixel addresses. **Hit pixel address readout only.**
Mounting options on the detector

- **OPTION 1**
 - LESS AGGRESSIVE MOUNTING

Access to signals, power supplies and biases, etc.:
- fanout/routing on the detector, pads created on the detector, wire bonding to mount in the system
Mounting options on the detector

OPTION 2

- MORE AGGRESSIVE MOUNTING for 4-side buttable sensor arrays and improved power distribution

- both-side bonding (thinning, exposing TSV, deposition of bonding pads)
Digital circuitry

64 × 64 matrix divided in 16 submatrices of 4 × 64 pixels – readout out LVDS with 100 MHz

The chip is designed to yield 10 μs frame readout time at the mean occupancy of 3.8×10^8 photons/cm^2/s.

The data sparsification circuitry is running simultaneously in each group. The sparsification circuitry (Modified version of MEPHISTO chip – P. Fischer, NIMA461, 2001) is common for each group of 256 pixels. It is primary a multi-input logic OR gate integrated with priority encoder. The encoder selects pixels automatically in the binary code. The layout of the sparsification circuit is distributed into all pixel.
Details of circuitry - Digital

Full timing diagram of readout sequence

Content of counter always read first; this enables an imaging mode where NO pixel addresses are read; All pixels must be set permanently

why 5 bit counters are not too short:

1 μs long pulse (τ_s=250 ns) \(\rightarrow \) maximum rate of event that be counted is less than 1 MHz,
The depth of 5 bit counters is 32 \(\rightarrow \) 32 μs to fill up the counter, 8 bits (3 bits of starting sign overload) \(\times \) 10 ns (serial clock) \(\times \) 256 (pixels in the group) = 20.4 μs

5 bit long counters \(\rightarrow \) operation maximum counting speed is dictated by the front-end circuitry. continuous readout 1000 hits/1ms/pixel (equivalent of 10bits counter depth)
Details of pixel layouts: 80 x 80 μm2

Analog part of pixel
- 2 x TSV for detector contact

Digital part of pixel
- Discriminator output
- 2 x 3D bond pads for each signal
- 2 x TSV for detector contact
- 7-bit trim offset, 3-bit trim RF, single/dif mode, CAL enable
- 12-bit for configuration
- 2-lines for CAL circuits
- Power supplies lines tied between tiers
Two versions of VIPIC chips were made - tested only one.
Testing Setup - photo

FPGA Tasks

1. Load data to the registers (3 registers, 3 lies per register)
2. Control signals generation (4 DO lines)
3. Data readout (16 DI lines)
4. Implementation of the VIPIC Virtual Counters in the FPGA memory (Counters are incremented of the value read from the chip until operation is stopped)
5. Generate 4 analog outputs for calibration amplitude and threshold voltage

Real Time OS Tasks:

1. Load Data to be send out to the chip
2. Set threshold voltage
3. Start FPGA operation
4. Read the Virtual Counters data summed in the e.g. 1 000 single readouts
5. Send the data to GUI over the TCPI / IP & save the data file
Performed tests (without detector)

1. Measured all bias currents for CSA, shaper and discriminator and reference current for trimming DACs
2. Measured overall power consumption in static and in operation
3. Tests of digital shift registers defining configuration of a pixel (pixel SET, Pixel RESET, reset, pixel SETTING)
4. Tests of the whole digital readout chain (pixel 1-stage pipeline logic, sparsifier: 8 bit priority encoder, pixel readout selector, serializer, level adapters, LVDS drivers)
5. Readout chain including analog in acquisition of noise hits (dead-timeless operation with alternating counters)
6. Discriminator threshold scan with noise counts (full readout)
7. Tests of whole readout chain with internal calibration
Performed tests (3 operational chips out of 5 bonded)

1. Power consumption and reference currents

Reference analog currents (according to spec ~2%):

<table>
<thead>
<tr>
<th>Reference line</th>
<th>Voltage</th>
<th>Current</th>
<th>Current (simulat.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vfed</td>
<td>830mV</td>
<td>7.16uA</td>
<td>7.2uA</td>
</tr>
<tr>
<td>Vcas</td>
<td>420mV</td>
<td>31.8uA</td>
<td>32uA</td>
</tr>
<tr>
<td>Vsh</td>
<td>680mV</td>
<td>14uA</td>
<td>14.2uA</td>
</tr>
<tr>
<td>Vdis</td>
<td>470mV</td>
<td>28.5uA</td>
<td>28.8uA</td>
</tr>
<tr>
<td>Vdac</td>
<td>760mV</td>
<td>9.82uA</td>
<td>10uA</td>
</tr>
</tbody>
</table>

Power consumption according to specification (no 3D influence on process values = expected from 2D processing)

2. Testing digital shift registers (communication to digital layer via analog layer)
Configuration Register Tests

1. Function of pixel SET is to make pixel acting hit permanently and feeding into the readout
2. All or certain pixels can be set for always being read out (feasible ROI)
3. Function of pixel RESET is to make pixel never allowed to feed into sparsifier
4. All or certain pixels can be disabled
5. Pixel SET and pixel RESET with 1-stage pipeline pixel logic work!

1. Pixels that were SET yield always addresses in the readout but their counter content depends if they were having noise or calibration hits

pixel SET and pixel RESET proper operations on all bonded chips
Threshold scan around the discriminator DC level and noise counts

1. Single exposition time is equal 32 us (speed - analog limited). In this time we are able to count up to 32 counts from X-ray source/calibration/noise.

2. To obtain higher statistic of noise we repeat the single step with certain threshold 1000 times and after each exposition (32 us) we add the counters’ data together.

3. Example of noise counts for 3 pixels is shown below.

Remember: all results readout through whole sparsifier.
two unambiguously resolving groups resulted from noise hits at extreme DAC settings

All pixels respond

Communication between tiers does not show any misses
Analog Part Tests

Calibration Pulses

1. During each exposure time the amount of 10 calibration pulses is sent to the analog front end.

2. Pulses with three different amplitudes

Currently calibration pulses sent simultaneously to all pixels

Gain \approx 40 \text{ uV/el}
(injection capacitor only 1.7fF)

ENC \approx 75 \text{ el. Rms}

Values are close to expected
Conclusions

1. 3D fabrication demonstrated:
 1. Chip is functional (no shorts, no missing connections on the bonding interface)
 2. 2-tier chip behaves like a standard 2D device (all signals, power supplies, biases make connections between tiers)

2. Full functionality demonstration still underway, but majority shows satisfactory operation of the device
 1. Tests of all item yielded positive results
 2. The “bumper-to-bumper” (from the detector pad, through the sparsifier to the readout pad) functionality of the whole chain has been shown!
 3. Chip works in both operation modes: timing and counting
 4. One problem experienced with pixel SETTING shift register – is being investigated

3. Next tests and steps:
 1. Tests of pixel to pixel uniformity and adjustment of trimming DACs
 2. Need more chips statistics (expected soon from new wafers) and assembly with a test detector using Au stud-bonding and later using DBI bonding to a dedicated sensor from BNL
Acknowledgements

Work at AGH UST was supported by Ministry of Science and Higher Education, project no. N515 243 037 in years 2009–2011, Poland.

Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. Department of Energy.

Brookhaven National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886