A Novel Experiment Searching for the Lepton Flavor Violating Decay $\mu \rightarrow eee$

Dirk Wiedner, Heidelberg
On Behalf of the Mu3e Proto-Collaboration
September 20th 2012
Physics Motivation

Lepton flavor violation?

Standard model:
• No lepton flavor violation
Physics Motivation

Lepton flavor violation: $\mu^+ \rightarrow e^+ e^- e^+$

Standard model:
• No lepton flavor violation, but:
 o Neutrino mixing
 o Branching ratio $< 10^{-50} \rightarrow$ unobservable
The Mu3e Signal

- $\mu \rightarrow eee$ rare in SM
- Enhanced in:
 - Super-symmetry
 - Grand unified models
 - Left-right symmetric models
 - Extended Higgs sector
 - Large extra dimensions
The Mu3e Signal

- $\mu \rightarrow eee$ rare in SM
- Enhanced in:
 - Super-symmetry
 - Grand unified models
 - Left-right symmetric models
 - Extended Higgs sector
 - Large extra dimensions

- Rare decay (BR<10^{-12}, SINDRUM)
 - For BR $O(10^{-16})$
 - $>10^{16}$ muon decays
 - High decay rates $O(10^9 \text{ muon/s})$

Dirk Wiedner, Mu3e collaboration
The Mu3e Background

• Combinatorial background
 o $\mu^+ \to e^+\nu\nu$ & $\mu^+ \to e^+\nu\nu$ & e^+e^-
 o many possible combinations

➢ Good time and
➢ Good vertex resolution required
The Mu3e Background

• $\mu^+ \rightarrow e^+ e^- e^+ \nu \nu$
 - Missing energy (ν)
 - Good momentum resolution

Challenges

• High rates
• Good timing resolution
• Good vertex resolution
• Excellent momentum resolution
➢ Extremely low material budget
Challenges

- High rates: $10^9 \mu$/s
- Good timing resolution: 100 ps
- Good vertex resolution: $\sim 100 \mu$m
- Excellent momentum resolution: ~ 0.5 MeV/c2
- Extremely low material budget:
 - $1 \times 10^{-3} X_0$ (Si-Tracker Layer)
 - HV-MAPS spectrometer
 - 50μm thin sensors
 - $B \sim 1$ T field
 - + Timing detectors
The Mu3e Experiment

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope
The Mu3e Experiment

- Muon beam O(10^9/s)
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope
The Mu3e Experiment

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope

Dirk Wiedner, Mu3e collaboration

9/20/2012 • 12
The Mu3e Experiment

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope
The Mu3e Experiment

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field
- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope
PSI μ-Beam

Paul Scherrer Institute Switzerland:
- 2.2 mA of 590 MeV/c protons
- Phase I:
 - Surface muons from target E
 - Up to a few $10^8 \mu/s$
- Phase II:
 - New beam line at the neutron source: HIMB project (2y application)
 - Several $10^9 \mu/s$ possible
 - $>10^{16}$ muon decays per year
 - BR 10^{-16} (90% CL)

Dirk Wiedner, Mu3e collaboration
HV-MAPS

- **High Voltage Monolithic Active Pixel Sensors**
- HV-CMOS technology
- Reversely biased

by Ivan Peric
I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology
Nucl.Instrum.Meth., 2007, A582, 876
HV-MAPS

- **High Voltage Monolithic Active Pixel Sensors**
- HV-CMOS technology
- Reversely biased ~60V
 - Charge collection via drift
 - Fast $O(100 \text{ ns})$
 - Thinning to $< 50 \mu\text{m}$ possible

by Ivan Peric
I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology
Nucl.Instrum.Meth., 2007, A582, 876
HV-MAPS

- **High Voltage Monolithic Active Pixel Sensors**
- HV-CMOS technology
- Reversely biased $\sim 60V$
 - Charge collection via drift
 - Fast $O(100 \text{ ns})$
 - Thinning to $< 50 \mu m$ possible
- Integrated readout electronics

by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology
Nucl.Instrum.Meth., 2007, A582, 876
Current Chip Prototype

- 180 nm HV-CMOS
- Pixel matrix:
 - 42 x 36 pixel
 - 39 x 30 μm² each
- Ivan Peric ZITI
 - Analog part almost final
 - Digital part in next submission
Timing Tests

• Timing critical
 o $10^9 \mu/s$
 ➢ $O(10 \text{ ns})$ resolution
• LED pulsed sensor
• Double pulse resolution
Timing Tests

- LED pulsed sensor
- Double pulse resolution
 - Visible in oscilloscope
Timing Tests

- LED pulsed sensor
- Double pulse resolution
 - Visible in oscilloscope
 - ... or time over threshold

![ToT Spectrum of Double Pulses]

- Delay 4.7 μs

 Dirk Wiedner, Mu3e collaboration
Double Pulse Resolution

- Ratio of
 - resolved to unresolved double pulses
- $5.27 \pm 0.01 \, \mu s$
Construction
Mu3e Silicon Detector

- Conical target
- Inner double layer
 - 12 and 18 sides of 1 x 12 cm
- Outer double layer
 - 24 and 28 sides of 2 x 36 cm
- Re-curl layers
 - 24 and 28 sides of 2 x 72 cm
 - Both sides (x2)

180 inner sensors
4680 outer sensors
➢ 274 752 000 pixel
Material

- HV-MAPS
- Flex print
- Kapton Frame
Inner Double Layer

Very stable self supporting structure
Timing Detectors
Timing Detectors
Timing Detectors

- **Fiber hodoscope**
 - Before outer pixel layers
 - 250 μm scintillating fibers
 - SiPMs
 - 1 ns resolution

- **Tile detector**
 - After recurl pixel layers
 - 1x1 cm² scintillating tiles
 - SiPMs
 - 100 ps resolution
Schedule

- **2012** Letter of intent to PSI, tracker prototype, technical design, research proposal
- **2013** Detector construction
- **2014** Installation and commissioning at PSI
- **2015** Data taking at up to a few $10^8 \mu/s$
- **2016+** Construction of new beam-line at PSI
- **2017++** Data taking at up to $3 \cdot 10^9 \mu/s$
Institutes

• Mu3e proto-collaboration:
 o DPNC Geneva University
 o Paul Scherrer Institute
 o Particle Physics ETH Zürich
 o Physics Institute Zürich University
 o Physics Institute Heidelberg University
 o ZITI Mannheim
 o KIP Heidelberg
Summary

- Mu3e searches for lepton flavor violation
- \(> 10^{16} \) \(\mu \)-decays \(\rightarrow \) \(BR < 10^{-16} \) (90% CL)
- Silicon tracker with \(\sim 275M \) pixel
- HV-MAPS 50 \(\mu m \) thin
- Two SiPM based timing systems
- Prototypes look encouraging

Dirk Wiedner, Mu3e collaboration 9/20/2012
Backup Slides
The Mu3e Experiment

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Tile hodoscope

Dirk Wiedner, Mu3e collaboration

9/20/2012 35
Sensor + Analog + Digital

Pixel

- Sensor
- Injection
- CSA
- Source follower
- Amplification
- Integrate charge

Periphery

- BL
- Comparator
- AC coupling via CR filter
- Set individual threshold
- Digital output (ToT)

Dirk Wiedner, Mu3e collaboration
Pulse Shape

- LED setup
- Test pulse latency
- + time over threshold
- ... for different thresholds
 - faster shaping needed
Digital Logic

- **Pixel logic:**
 - Address generation
 - Time stamp
 - Column bus logic

- **Column logic**
 - Priority logic
 - ... using tri-state bus
 - Fifo buffer

- **Chip wide logic**
 - Data frame generation

- **Serializer(s)**
 - 800 Mbit/s LVDS
Data Acquisition

- 2.5 GHz muon decays
- 50 ns readout frames
- O(5000) pixel chips
 - 800 Mb/s readout links
- O(7500) scintillating fibers
- O(7000) timing tiles
 - DRS readout
- 3 layers switching FPGAs
 - Optical data links
- Online filtering
Event Filter Farm

- Triggerless readout
- GPU computers
 - PCIe FPGA/optical input
 - Tflop/s GPU
- 10x faster than CPU
 - Requires custom code
 + Makes farm affordable

Optical mezzanine connectors

GPU computer
Cooling

- 2 m² silicon detector
- Up to 200mW/cm²
- ≤ 4 kW cooling
- 60 °C maximum
- Gaseous helium
- Laminar flow
- Tests:
 - Inductive heating
 - Aluminum foil
Thinning

- 50 μm Si-wafers
 - Commercially available
 - HV-CMOS 75 μm (AMS)
- Single die thinning
 - For chip sensitivity studies
 - < 50 μm desirable
 - In house grinding?
 - Local company
Si-Layer Rad Length

- Radiation length per layer
 - 2x 25 μm Kapton
 - $X_0 = 1.75 \times 10^{-4}$
 - 15 μm thick aluminum traces (50% coverage)
 - $X_0 = 8.42 \times 10^{-5}$
 - 50 μm Si MAPS
 - $X_0 = 5.34 \times 10^{-4}$
 - 10 μm adhesive
 - $X_0 = 2.86 \times 10^{-5}$
- Sum: 8.22×10^{-4} (x4 layers)
 - For $\Theta_{\text{min}} = 22.9^\circ$
 - $X_0 = 21.1 \times 10^{-4}$

- Dirk Wiedner, Mu3e collaboration
Flex Print

- Single Layer in active region
- Multilayer in “cable” end
- LVDS buffers at edge
Tools

- Kapton-Frame tools:
 - Sensor on Flex print
 - Gluing groove
 - Vacuum lift
 - Tools are tested with
 - 25 μm Kapton foil
 - 50 μm glass
Outer Double Layer

Minimal material in sensitive region
Outer Doublet Design

Modular design
Frame Support

- Support design light weight
 - Spokes combine all separate modules
 - Connected by metal beams
 - ... running in bushings
Fiber Hodoscope

- 250 μm scintillating fibers
 - Kuraray SCSF-81M
 - double cladding
 - 7500 in total
- Very high occupancies:
 - 24% in 50ns time frame
- Sampling readout
 - SiPM
 - DRS5 chip
 - From Stefan Ritt, PSI

Dirk Wiedner, Mu3e collaboration
Tile Detector

- 1x1 cm2 scintillating tiles
 - $O(7000)$
- GosSip simulation
 - MPPC with 3600 pixels
 - 100 ps resolution (RMS)
 - 97% efficiency
Momentum Resolution

- Multiple scattering only
- Current design:
 - 50 µm silicon
 - 50 µm Kapton
 - Helium gas cooling
 - 3 layer fiber tracker
Mu3e complementary to MEG