The LHCb VELO Upgrade

Daniel Hynds
(On behalf of the LHCb Collaboration)
Flavour physics experiment built to cover forward geometry

Design luminosity lower than LHC deliverable

- Built for $\mathcal{L} = 2 \times 10^{32} \text{ cm}^2 \text{ s}^{-1}$ at 25ns spacing (interaction per bunch crossing $\mu = 0.4$)
- Currently operating at $\mathcal{L} = 2 - 4 \times 10^{32}$ cm2 s$^{-1}$ at 50ns spacing ($\mu = 1.4 - 1.7$)

Running at higher luminosity does not improve hadronic event yield due to trigger bottleneck

Overview in talk by Mark Tobin
Why upgrade? **Triggering**

- Hardware trigger limits efficiency in hadronic modes
 - Turning up the luminosity doesn’t translate to increase in interesting in events
 - Remove hardware trigger
 - Luminosity increase gives factor 10 improvement to muonic channels, 20 to hadronic channels (not possible with current trigger)

- Move triggering completely to software for full flexibility
 - Reconstruct all events at 40MHz

Comparison of hardware trigger (left) with Topological (right)

Current Trigger

- Hardware trigger
 - Muon + Calorimeter data
 - ~1MHz

Upgrade Trigger

- Optional low level trigger
 - 10 - 30 MHz

CPU Farm (1)

- Addition of information from other sub-detectors
- Full VELO reconstruction
- Momentum measurements
- Cuts on IP, p, p^T
- ~4kHz

CPU Farm (2)

- Full reconstruction
- Inclusive and exclusive selections
- ~20kHz
VErtex LOcator (VELO)

- **Present detector** was a huge accomplishment:
 - High IP resolution
 - 1MHz readout
 - Clean reconstruction

- Effective design:
 - Single sided n$^+$-on-n silicon sensors
 - Each half-station contains an R- and Φ- sensor
 - Mounted in secondary vacuum, separated from beam vacuum by 300µm RF foil
 - Mobile: mechanically moved from 30mm to 8mm for data taking

- **Future detector** must improve on this:
 - Increase readout to 40MHz for full reconstruction
 - Increase granularity to allow operation at $\mathcal{L} = 2 \times 10^{33}$ cm2 s$^{-1}$

- 2 options proposed
 - Strip detector following similar philosophy to existing design
 - Pixel detector based on TimePix family of chips
Module Overview

- For both detector proposals, module design based along similar ideas
 - Move to 200µm n-on-p sensors (single sided processing)
 - High thermally conductive spine - diamond proposed as strong candidate, or silicon microchannels
 - Re-use of existing infrastructure - CO₂ cooling plant, vacuum vessel, motion system
 - Completely new RF foil

- Notable module differences
 - Strip option keeps dead material at the periphery of the measurement area (out of acceptance)
 - Pixel option uses single layer of flip chip assemblies per module, mounted on both faces of the cooling spine to allow a small overlap between ASICs and optimise mechanical stability.
Strip detector front end

- Front end chip currently being designed, with overlap between VELO and tracking stations
- Chip specifications (50ke⁻ signal)
 - ~25ns peaking time
 - Zero suppressed output
 - Sampling tuneable in 0.5ns steps over full 25ns range
 - Signal 25ns after peaking < 5%
 - Recovery within 10 bunch crossings
 - 6-bit on chip ADC
- Sensors are designed with varying strip pitch such that occupancy is even amongst all strips ⇒ modest data rate requirements (1.4 Gbit s⁻¹)

Required functionality:
- Take advantage of 130nm process - move signal processing on-chip
- Common mode suppression
- Pedestal subtraction
- Strip masking
- COG Clustering? Or aim for simplicity...?
Pixel detector front end

- Chip specifications
 - 55µm × 55µm pixels
 - 4+ bit ToT counter size
 - 12-bit bunch crossing counter
 - < 25ns timewalk at 1ke⁻¹
 - 50ke⁻¹ dynamic range (tuneable)
 - **Hit rate 500 MHz**
 - Power consumption < 3W
 - **Output bandwidth > 12 Gbit s⁻¹**
 - **Data driven readout (not triggered)**

- Chip designed around the TimePix family of chips
- Digital logic shared between neighbouring pixels
 - => On-chip data compression
 - All hits in a 4×4 region from the same bunch crossing read out together
• For both chip designs, data sent off-detector is zero suppressed
• Output data rate \propto hit rate
• For a strip detector, the strips vary in pitch and number such that occupancy stays even \Rightarrow constant output rate from each chip ($\sim 1.4 \text{ Gbit s}^{-1}$)
• Not possible for a pixel detector (without serious routing!). Data rate higher towards the beam:
 • 40MHz beam crossing \times 5 tracks (inner region) = \textbf{200 MHz track rate}
 • Uncompressed data rates of up to 15 Gbit s$^{-1}$
 • Compressed output of $\sim 12 \text{ Gbit s}^{-1}$ for the hottest ASIC
• In both cases, total detector readout reaches $\sim 2.5 \text{ Tbit s}^{-1}$
• Two ASIC schemes:
 • \textbf{Synchronous readout} - each bunch crossing is processed and data sent out sequentially
 • \textbf{Asynchronous readout} - each hit triggers its own readout after charge measurement. Data transmitted out of order, smearing data from several bunch crossings
The TELL40 - off detector DAQ

Strip ASIC
- Zero suppressed output
- Synchronous readout style
- COG Clustering on-chip?

Pixel ASIC
- Zero suppressed output
- Asynchronous readout style
- Compressed formatting

TELL40
- Packet length evaluation
- Event buffering
- Clustering
- Time-reordering
- Event buffering
- Packet decoding
- Clustering

Event reconstruction

Resource intensive!

Move to CPU farm?
Cooling options

- Cooling of both strips and pixels is challenging
 - Strips must be cooled to the very tip to prevent thermal runaway
 - Pixel chips extend all the way to the tip - heating power directly under the sensor

- Two options being investigated
 - Metallised diamond substrate: traces for chip IO deposited on high conductivity diamond with thermally activated silver paste (only needed for pixels)
 - Microchannel cooling option: overlap with NA62 and ALICE R&D. Must be able to produce ~200µm (wide) × 70µm (deep) channels which can withstand > 100 bar. Several prototypes already produced and working in lab environment 65 bar (at room T) and at -27°C

- Aim to re-use CO₂ cooling system used by the existing detector

Microchannel cooling prototype performance

Metallised diamond

Si microchannels bonded to glass plate
3 chip module
Prototyping - modules

Strip sensor prototype design

Submitted strip design

First received Phi sensor

First received R sensor
Prototyping - modules

Testbeam mount, single chip prototype with diamond/tpg cooling

Custom kapton mount and readout flex

Single chip prototype, conceptual and kapton-mounted in lab

Submitted pixel mask, showing elongated edge pixels
Prototyping - RF foil

- Upgraded VELO will operate in vacuum tank used by current detector
 - Primary beam vacuum separated from secondary vacuum by 200-300µm RF foil
 - Will have to be mechanically stable to cope with pump-down & venting without deformation

- Mill foil from one solid block of material
- 5-axis milling device used
 - Step 1: Mill out the inside
 - Step 2: Fill with wax
 - Step 3: Mill the outside
 - Step 4: Heat and remove wax

Prototype RF foil - two halves
Milling of the RF foil
Testbeam plans

- Testbeam program has been working to test a variety of prototypes. 2012:
 - Performance of 0.5 and 2×10^{15} 1 MeV n_{eq} cm$^{-2}$ irradiated sensors (rad. hard Medipix3)
 - Various guard ring designs with 50 - 2000 µm pixel-to-edge distance and 0 - 6 guard rings
 - Tracking performance of prototype sensors over full θ coverage

- Main priorities for the coming year:
 - **TimePix3**: validate high rate operation (should be able to cope with 40MHz hit pixel rate...) Validate data driven readout style
 - Strip prototypes: Chip tests with low and high intensity beam
 - Sensors: non-uniform irradiation tests, efficiency measurements, signal yield

2013
- TimePix3 tests
- Data driven readout
- High rate operation
- Non-uniform irrad.

2014
- **Velopix**
 - Factor 10 rate increase
 - 40MHz beam operation

 Strip Chip
 - Low rate operation
 - High rate operation
 - 40MHz beam operation

2015 - 2016
- Full half detector tests?
The TimePix telescope

Testbeam program has been hard at work to validate chip choice (tracking with the TimePix ASIC), and to test a variety of prototypes:

- Slim edge devices
- Variable guard ring designs - as low as 50µm pixel-to-edge distance!
- Single hit resolution for variable thicknesses of sensors
The TimePix telescope

- Development of a high rate precision telescope was necessary to validate TimePix as an option for particle tracking, and to allow a multitude of studies
 - Single hit resolution
 - Efficiency
 - Active area and guard ring structures

- Extension of the telescope as part of the AIDA project - has been used as a test facility by internal (scintillating fibres LHCb upgrade) and external (CLiC, ATLAS PPS, WP9) users

- Performance well characterised:
 - 3 - 12 kHz track rate
 - ~1ns timestamping resolution
 - ~2µm pointing resolution at the DUT
 - Minimal hardware integration
Some brief results...

Charge sharing studies with TimePix chip

Sensor wafer with variable guard ring designs

Medipix3 read out with Diamond MERLIN readout (NI PXI-based)

IV curves for prototype strip detectors

Cluster width distribution for edgeless sensors

ADC weighted heatmap for slim edge pixel sensor showing increased CCE near edge

Preliminary!
Timescale

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor R&D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics R&D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module R&D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure R&D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanics Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Many challenges still to overcome
 - LHCb upgrade scheduled for 2018 - module production 2015/2016
 - R&D programme well underway, with ASIC designs advancing for both options
 - Decisions driven by simulation work and technical feasibility
 - Ground details dictated by beam and lab measurements

- Decision over detector type (strip/pixel) to be taken mid-2013
 - Focus resources on most viable option
 - Detailed front end simulation studies

- Timescale is tight (as always)
 - Module production proper to begin in 2016
 - High rate validation 2014 - where?

- Installation during long shutdown in 2018...

- R. Aaij et al. (LHCb Collaboration)
 - The LHCb Upgrade
 LHCb (Physics) Public Note LHCb-PUB-2012-010 (July 2012)
 - The LHCb Collaboration,
 Framework TDR for the LHCb upgrade
 CERN/LHCC 2012-007, LHCb TDR 12 (May 2012)